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ABSTRACT
This paper extends the PRESTO architecture [13], a transformer-
based model initially designed to analyze multimodal pixel time
series composed from multi-source satellite imagery. The final goal
is to forecast pollutant concentrations using these pixel time series
which convey different types of measurements (weather, temper-
ature, other pollutant concentrations, land characteristics, etc. ).
Through self-supervised learning, mimicking Masked-Language
pretraining strategies, PRESTO efficiently captures spatio-temporal
patterns, generating compact embedding for pixel time series. Lever-
aging these embedding a downstream task of pixel time series
forecasting is developed. With a regression head built upon an
MLP regressor, this model achieves accurate predictions. PRESTO’s
adaptability to multi-source and multimodal learning makes it a
promising solution for efficient and versatile feature extraction on
pixel time series.
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1 INTRODUCTION
The utilization of machine learning alongside extensive remote
sensing datasets has led to substantial societal benefits in various
domains. Applications may range from monitoring progress on
sustainable development goals to enhancing weather or pollutants
forecasting, from bolstering disaster management capabilities to
improving smart city design.

Machine learning models tailored for remote sensing applica-
tions face challenges in handling multimodal and multi-source data,
particularly in scenarios where labelled datasets are scarce. The
main challenges in this field are:

• Highly multimodal and multi-source data.
• A highly informative temporal dimension.
• Missing data handling.
• Unavailability of labelled datasets.

These scenarios have brought the research towards self-supervised
techniques and the models that are best suited for this kind of task
are considered to be transformer-like architectures[14].
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This paper introduces a novel approach that combines a cus-
tomized transformer architecture named PRESTO[13] for feature
extraction and an MLP regressor for forecasting. The proposed
method is designed to address the unique characteristics of re-
mote sensing data, including temporal dynamics and information
collected from diverse sensors. The main contribution may be sum-
marized as follows:

• PRESTO extension to different data sources (multisource
model) and to a specific finer time granularity (daily con-
cerning the PRESTO monthly granularity).

• Preprocess pipeline to align both spatially and temporally
different sources.

• Generalization of PRESTO pretrain strategy to encom-
pass different sources and strategies.

• Forecasting pipeline using the PRESTO encoder and an
MLP regressor.

• Label weighting to effectively train the model using both
golden and synthetic labels.

Specifically, our work focused on the Urban area of Milan and we
used both different satellites as time-dynamic data sources and some
time-static measurements for the pretraining of PRESTO[13]. For
the downstream forecasting task, certain measurements obtained
frommonitoring stations in Milan served as the ground truth, while
additional synthetic labels were created to augment the training
dataset.

2 RELATEDWORKS
One key aspect in the design of machine learning algorithms for
remote sensing is the consideration of the characteristics inherent
to remote sensing data. These characteristics encompass the highly
multimodal nature of the data, stemming from a multitude of Earth-
observing satellites equipped with diverse sensors. Additionally,
the temporal dimension holds paramount importance due to the
dynamic nature of Earth’s landscapes, necessitating approaches
that emphasize pixel time series modelling.

Furthermore, the unique metadata associated with remote sens-
ing data, specifically location data and timestamps, has proven in-
strumental in augmenting machine learning algorithms [15]. Chal-
lenges persist in this domain, including limited availability and
reliability of labelled datasets particularly in under-resourced ge-
ographies [2, 6, 8, 10], necessitating exploration into self-supervised
learning strategies [1, 3, 7, 9, 11].

Prior research has predominantly treated remote sensing data
to natural imagery, utilizing methodologies and architectures origi-
nally designed for ground-level photography, for example, by us-
ing a ResNet backbone [5], or by adapting masked autoencoding
for image classification to satellite imagery [3, 11]. However, this
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(a) Sentinel5 (b) Sentinel3 (c) DEM (d) Land Cover

Figure 1: Examples of some bands measured by data sources. Some bands have lots of nan values (1a), some sources are dynamic,
with one or more measurements per day (1a, 1b), and some others are static in time, the latter measurements are valid for every
considered day (1c, 1d).

(a) Sentinel5 before (b) DEM before (c) Land Cover before

(d) Sentinel5 after (e) DEM after (f) Land Cover after

Figure 2: Data sources spatially aligned: from each data source’s per pixel resolution to a common shape of (FINAL H, FINAL W)
that corresponds to a per-pixel resolution of 500m.

approach has often overlooked the holistic exploitation of all at-
tributes inherent in remote sensing data, such as the incorporation
of diverse sensors and the temporal dimension.

Notably, recent efforts have introduced models like PRESTO, a
lightweight transformer-based architecture tailored to efficiently
process multi-sensor pixel time series inputs, showcasing competi-
tive performance across diverse geographies and task types [13].
Additionally, Presto demonstrates robustness in scenarios with
missing input channels or temporal information, underscoring the
significance of leveraging multi-sensor time series in its training
process.

3 METHOD
3.1 Pretraining Data Sources
The time dynamic data sources used are all coming from satellite
imagery in .tiff format. Therefore, each file contains a timestamp,
one measurement for each quantity that the satellite has to mea-
sure (called Band) and its metadata (spatial resolution, temporal
resolution, bounding box, etc.). The specific sources are:

• Era: several variables related to weather conditions mea-
sured daily at city level, with an 11 km resolution.

• Sentinel3: two daily measures of temperature with 1 km
resolution.

• Sentinel5: several pollutants measured daily with resolution
5.5 x 3.5 km.
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Figure 3: Pixel Time Series

The time static data sources used are also in .tiff format but
consists of one single file that remains constant for the whole
duration of the period analyzed. The specific sources are:

• Dem: Digital Elevation Model of the city with 10m resolu-
tion.

• Land Cover 10m resolution map of land use classification.
Given that the Land Cover is the only data source whose values

are not to be considered real values but categorical (it is a classifi-
cation/taxonomy of the geographical area where each pixel has a
value that represents one specific class of the 27 available classes)
we need to perform a manipulation of the data:

Initial LC matrix := [height, width] each value ∈ {1, ..., 27}
Final LC matrix := [height, width, 27] each value ∈ {0, 1}

What is happening is that we simulate one hot encoding that is
performed along the third dimension. This procedure is also used
because of the resizing of the images we will do. Averaging the
class values would have had no meaning, instead with this one
hot representation we will have for each class a value in [0, 1]
that represents the fraction of pixels that have been averaged that
belong to that class.

3.2 Finetuning additional Data Sources
• Golden Truth: Ground truth punctual measurements of
pollutants.

• Synthetic Labels: .tiff file generated starting from the punc-
tual measurements through an XGBoost model.

3.3 Data structures
To work with pixel time series built upon this highly multimodal
data two main problems arise: missing data and different resolu-
tion, both in spatial and temporal domain. This means that some

satellites make multiple measurements per day (Sentinel3) whereas
others make only one (Sentinel5) and the measurements differ in
spatial resolution from each other. Hence, it is possible that even
if the bounding box is the same, the pixels among the sources may
represent a different portion of the geographical area. Moreover,
the delicate sensors provide lots of missing values even if the daily
measurement is available. The solutions to these problems that we
decided to implement are:

• Spatial alignment: all the sources are aligned to a final
shape (FINAL H, FINAL W) that corresponds to a resolution
of 500 m per pixel. This means that when an image has a finer
resolution, groups of adjacent pixels are averaged. Whereas
if the initial resolution is courser the final image is padded
and interpolated to reach the final resolution.

• Temporal alignment: all the sources are brought to the
minimum daily frequency, in our case one measurement per
day is considered for each source.

• Spatial missing data: when one of the sources is missing a
measurement of one of its bands, the relative nan value is
filled with the average (computed along the time dimension)
of that band.

• Temporalmissing data: when one of the sources is missing
an entire day, synthetic data is generated to cover that day.
The values correspond to the average along the whole time
dimension of the measurements for each band.

• Temporal static data: when we consider static sources the
same value is used for each timestamp.

Once the first preprocessing step is completed we have for each
source exactly one daily measurement for each band with the same
per-pixel resolution. This means that all the sources are now spatio-
temporal aligned.

The second step is the generation of the pixel time series. Once
the sources are aligned, we retrieve for each pixel all the available
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Figure 4: Pretrain model

daily measurements. At this point, a pixel time series appears as
follows:

𝑃𝑖𝑥𝑒𝑙𝑇𝑖𝑚𝑒𝑆𝑒𝑟𝑖𝑒𝑠 := [𝑁𝑢𝑚𝐷𝑎𝑦𝑠, 𝑁𝑢𝑚𝐵𝑎𝑛𝑑𝑠]

whereNumBands is the concatenation of all themeasured quantities
by the sources. Notice that we will have several Pixel Time Series
equal to the final number of pixels which is FINAL H * FINAL W.

We decided to generate a dataset of pixel time series. Each ele-
ment of the dataset will be a segment of a pixel time series, each
pixel corresponds to a specific geographic area that is characterized
by its latitude and longitude. Moreover, each segment will be asso-
ciated with a starting day and a duration, the generated segments
may or may not overlap depending on how the rolling window
over the pixel time series is parameterized. To further characterize
the daily input, specifically with information about the seasonality
trends and possible periodic behaviours, we decided to use infor-
mation about day of week and day of year. So each element of the
dataset we built is composed as follows:

• Pixel Time Series: this is the series of concatenated mea-
surements of a contiguous period of length Num Timesteps.

𝑃𝑖𝑥𝑒𝑙𝑇𝑖𝑚𝑒𝑆𝑒𝑟𝑖𝑒𝑠 := [𝑁𝑢𝑚𝑇𝑖𝑚𝑒𝑆𝑡𝑒𝑝𝑠, 𝑁𝑢𝑚𝐵𝑎𝑛𝑑𝑠]

• Hard Mask: this contains information of where and when
the data inside the time series is not original data but it has
been substituted by the band average (1 if the original data
is unavailable, 0 otherwise).

𝐻𝑎𝑟𝑑𝑀𝑎𝑠𝑘 := [𝑁𝑢𝑚𝑇𝑖𝑚𝑒𝑆𝑡𝑒𝑝𝑠, 𝑁𝑢𝑚𝐵𝑎𝑛𝑑𝑠]

• Lat Lon: this contains the spatial information (latitude, lon-
gitude) of the pixel we are analyzing.

𝐿𝑎𝑡𝐿𝑜𝑛 := [𝑁𝑢𝑚𝑇𝑖𝑚𝑒𝑆𝑡𝑒𝑝𝑠, 2]

• Day of Year: for each of the days contained in the pixel time
series there is the corresponding day of year.

𝐷𝑎𝑦𝑂𝑓 𝑌𝑒𝑎𝑟 := [𝑁𝑢𝑚𝑇𝑖𝑚𝑒𝑆𝑡𝑒𝑝𝑠]

• Day of week: for each of the days contained in the pixel
time series there is the corresponding day of week.

𝐷𝑎𝑦𝑂𝑓𝑊𝑒𝑒𝑘 := [𝑁𝑢𝑚𝑇𝑖𝑚𝑒𝑆𝑡𝑒𝑝𝑠]

3.4 Data structures for Finetuning
The task of forecasting implies that for each pixel time series, we
have to provide a target value that is either a golden truth or, if not
available, the synthetic labels of the following day. Namely, if we
have a pixel time series that ends on day t (e.g. 7𝑡ℎ of January) we
provide the target values of day t+1 (e.g. 8𝑡ℎ of January). Moreover,
this dataset will also provide for each element a loss factor that will
be used to weigh the loss based on how much we trust the provided
target value. This loss factor will be 1 if we use the Golden Truth
or it will decrease depending on how far we are from the nearest
stations that measure a Golden Truth. Hence, the element of the
dataset will be all the previous ones with two new information:

• Labels: a list of target values for a specific day and a specific
pixel.

𝐿𝑎𝑏𝑒𝑙𝑠 := [𝑁𝑢𝑚𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠]
• Loss Factors: how confident we are of the labels, inversely
proportional w.r.t. the geographical distance to the nearest
golden label. This factor is in the range [0.3, 1].

𝐿𝑜𝑠𝑠𝐹𝑎𝑐𝑡𝑜𝑟𝑠 := [𝑁𝑢𝑚𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠]

3.5 Model
The PRESTO[13] architecture is a transformer-like model that is
based on an encoder-decoder structure[14]. The peculiar behaviours
are in how the initial embedding is provided to the encoder.

Each pixel time series:

𝑥 := [𝑁𝑢𝑚𝑇𝑖𝑚𝑒𝑠𝑡𝑒𝑝𝑠, 𝑁𝑢𝑚𝐵𝑎𝑛𝑑𝑠]
that enters in the model is transformed into many tokens (each
represented by an embedding 𝑒) to be processed by the PRESTO
transformer[13].

For each timestep, 0 ≤ 𝑖 ≤ 𝑁𝑢𝑚𝑇𝑖𝑚𝑒𝑠𝑡𝑒𝑝𝑠 , the input NumBands
are split into 𝐶 channel groups according to their type of sensor or
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Figure 5: Forecasting model

source (each data source corresponds to a channel group). We then
project each of them to a common latent space of dimension 𝑑𝑒 by
separate learned linear projections. So we end up with a sequence
of tokens like:

𝑥 := [𝑁𝑢𝑚𝑇𝑖𝑚𝑒𝑠𝑡𝑒𝑝𝑠 ∗ 𝑁𝑢𝑚𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝐺𝑟𝑜𝑢𝑝𝑠, 𝑑𝑒 ]

To the representation of each token (one per channel group) is
further added a series of embedding:

• Positional embedding: the classical embedding used in
transformers to characterize the position of an elementwithin
a sequence, obtained through the sampling of sinusoidal
functions.

• Channel Group Embedding: an embedding to add to rep-
resent the band group.

• Lat Lon Embedding: an embedding to inject geospatial
awareness into the model.

• Day of Year Embedding: an embedding to inject temporal
awareness with respect to the year.

• Day ofWeek Embedding: an embedding to inject temporal
awareness with respect to the week.

This representation is then fed into the well-known encoder-
decoder structure.

3.6 Finetuning Model
The model used for the forecasting task is built upon a pretrained
PRESTO architecture. Once Presto has been pretrained on the
dataset its encoder is used as a feature extractor for the pixel time
series and the so-generated embedding becomes the input to mul-
tiple forecasting heads, one for each measure we want to predict.
The final model can be depicted as follows:

• PRESTO Encoder: the encoder of presto takes a pixel time
series and returns a vectorial representation of it.

• Regression Heads: for each one of the measures we want
to predict an MLP regressor is built. This regressor takes as

input the vectorial representation provided by PRESTO and
outputs a value that is the prediction.

3.7 Train & Evaluation
The initial architecture of PRESTO was specifically designed with
a different time granularity (month instead of days) than what
we needed. Therefore every pretrained checkpoint available was
unfortunately not suitable for our task. Hence, we have to retrain
from scratch our version of the model on the pixel time series
aforementioned.

The training strategy is very similar to the one of Large Language
Models like BERT[4] known as Masked Language. The strategy
consists of masking some of the values of the input and letting
the transformer reconstruct it. At each batch, one of the following
masking strategies is selected at random.

• Group Bands: select at random some band groups and mask
them in all the pixel time series in the batch.

• RandomTimesteps: select at random andmask some times-
tamps of all the pixel time series in the batch.

• Chunk Timesteps: select at random some contiguous num-
ber of timestamps of all the pixel time series in the batch.

• Random Combinations: select at random some values and
mask them.

The training is done byminimizing the reconstruction error. This
training strategy aims to let the encoder extract a representation
that is informative enough to be able to reconstruct the original
input with the decoder.

In our setting, the values of the input are not masked with a
special token as done in Natural Language Processing, because we
have no counterpart of [MASK] token available for real numbers
(all numbers bring an intrinsic meaning). What happens is that the
selected values to be masked are replaced with a value 0 before the
encoding and the optimization strategy is the minimization of the
Mean Square Error between the original value and the output of
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(a) Embedding Size comparison (b) Encoder/Decoder depth comparison

(a) With and without loss factor comparison (b) number of MLP hidden layers comparison

the model of that value, which corresponds to the reconstructed
value by the model.

Moreover, to avoid the possibility that the encoder-decoder con-
centrates too much on the static data (which are equal for each
element of the dataset and this could lead to learning an identity
transformation), we decided to apply a training strategy that masks
only the dynamic data and therefore train the model using a recon-
struction loss (MSE loss[12]) that considers only the reconstruction
of the dynamic data. The evaluation error is instead computed on
all the data because at inference time we are also interested in
understanding whether the overall reconstruction is reliable.

MSE =
1
𝑛

𝑛∑︁
𝑖=1

(𝑦𝑖 − 𝑦𝑖 )2 (1)

The training of the forecasting model is done by minimizing
the Mean Square Error weighted by the loss factors of each batch
element for all the target values.

MSEWeighted =
1
𝑛

𝑛∑︁
𝑖=1

loss factor𝑖 ∗ (𝑦𝑖 − 𝑦𝑖 )2 (2)

4 EXPERIMENTS
For all the experiments we used the measurements available –from
2018-04-30 to 2022-12-31 for the train and validation split, whereas
for the test we used data never seen by the model, specifically from
2023-01-01 to 2023-11-22. All the visualized losses will be on the
validation part of the dataset.

All the experiments are optimized with Adam on the MSEloss
with default parameters.

The specifics of themodels used forced us to first pretrain PRESTO
and find an architecture that best suited the Masked Language Strat-
egy, and only then train the forecasting model with the pretrained
PRESTO encoder. During the fine-tuning, the encoder of PRESTO
is not frozen and therefore updated through backpropagation.

The first group of experiments was designed to find the best con-
figuration possible for the encoder-decoder structure. We worked
with different possible values of embedding size and encoder/decoder
depth (number of attention blocks in a cascade structure) in table 1.

We have found that the best performing architecture on the
pretraining task is a PRESTO with the following :

• Embedding Size = 128
• Encoder/Decoder Depth = 4
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Hyperparameter Tested values
embedding size {64, 128}
encoder/decoder depth {2, 3, 4, 5}

Table 1: Table of pretraining hyperparameters.

The second group of experiments was designed to find the best
configuration possible for the MLP architecture structure. We first
checked if the loss factor was useful or not as a strategy. Moreover,
we worked with different possible values of MLP hidden layer num-
ber and used the PReLU as activation function. The table 2 shows
the tested values.

Hyperparameter Tested values
with loss factor {True, False}
MLP hidden layers {1, 2, 3}

Table 2: Table of finetuning hyperparameters.

We have found that the best performing architecture on the
forecasting task is a model with:

• Loss factor = True
• MLP hidden layer number = 3

As a final comparison, we have used a plain transformer to
predict the same set of pollutant concentrations. This model was
not trained or built by us but had the useful function of a benchmark
to compare our results with. This model was the previous and best
performing approach used to solve the same task by our colleagues
and mentors at LINKS Foundation. In Table 3 all the pollutant
predictions on the test dataset yield indeed a lower MAE than the
predictions of the old model.

POLLUTANT OUR PRESTO BASELINE
PM10 4.87 7.99
PM25 3.95 5.11
O3 14.86 15.35
NO2 10.6 13.63
CO 0.12 4.67
SO2 0.34 1.35

Table 3: Final comparison between pollutant forecasting er-
ror between our model and a baseline provided by LINKS
Foundation

5 CONCLUSION
As introduced at the beginning the great improvement brought
by the PRESTO architecture seems to be the ability to use domain
knowledge to enrich the initial embedding of the pixel time se-
ries fed to the architecture. The further development of a finer
time granularity and the extensions to different multimodal sources
has been successful and the results are promising. This kind of
model seems to be one of the most flexible and adaptive archi-
tectures in the landscapes of pixel time series analysis of satellite

imagery. Further improvement would require in our opinion the
extension to an attention mechanism that is not only computed
in the time dimension (as per the actual transformer) but also in
the geographical one. The positional embedding of the lat lon may
be insufficient to fully exploit the geographical information. Fi-
nally, our work is open-source and available at the following link:
https://github.com/LucaCatalano13/UAQA
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