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Transfer Learning

A Comprehensive Survey on
Transfer Learning

This survey provides a comprehensive understanding of transfer learning from the

TORINO

perspectives of data and model.

By FUZHEN ZHUANG"™, ZHIYUAN QI1*, KEYu DuaN, DoNGBO X1, YONGCHUN ZHU,
HENGSHU ZHU, Senior Member IEEE, Hul X10NG, Fellow IEEE, AND QING HE

ABSTRACT Transfer learning aims at improving the
performance of target learners on target domains by transfer-
ring the knowledge contained in different but related source
domains. In this way, the dependence on a large number
of target-domain data can be reduced for constructing tar-
get learmers. Due to the wide application prospects, trans-
fer learning has become a popular and promising area in
machine learning. Although there are already some valuable
and impressive surveys on transfer learning, these surveys
intreduce approaches in a relatively icolated way and lack the
recent advances in transfer learning. Due to the rapid expan-
csion of the transfer learmning area, it is both necessary and
challenging te comprehensively review the relevant studies.
This survey attempls to connect and systematize the existing
transfer learming research studies, as well as to summarize
and interpret the mechanisms and the strategies of transfer
learning in a comprehensive way, which may help readers
have a better understanding of the current research status and
ideas. Unlike previous surveys, this survey article reviews maore
than 40 representative transfer learning approaches, espe-
cially homogeneous transfer learning approaches, from the

performance of different transfer learning models, over 20 rep-
resentative transfer learning models are used for experiments.
The models are performed on three different data sets, that
is, Amazron Reviews, Reuters-21578, and Office-31, and the
experimental results demonstrate the importance of selecting
appropriate transfer learning madels for different applications
in practice.

KEYWORDS | Domain adaptation; interpretation; machine
learning: transfer learning.

NOMENCLATURE
Symbol Definition

n MNumber of instances.
m MNumber of domains.
™ Domain.

T Task.

A Feature space.

}‘ Label space.

Feature vector

https://arxiv.org/abs/1911.02685
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In a nutshell: knowledge transfer
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Instance-based Inductive Deep Transfer Learning by
Cross-Dataset Querying with Locality Sensitive Hashing

Somnath Basu Roy Chowdhury Annervaz KM Ambedkar Dukkipati
[T Kharagpur Indian Institute of Science & Indian Institute of Science
bresomnath@ee.iitkgp.ernet.in Accenture Technology Labs ambedkar@iisc.ac.in

annervaz{@iisc.ac.in

ABSTRACT

Supervised learning models are typically trained on a single dataset
and the performance of these models rely heavily on the size of
the dataset, Le.. amount of data available with the ground truth.
Learning algorithms try to generalize solely based on the data that
is presented with during the training. In this work, we propose
an inductive transfer learning method that can augment learning
models by infusing similar instances from different learning tasks
in the Natural Language Processing (NLP) domain. We propose to
use instance representations from a source dataset, without inherit-
ing anything from the source learning model. Representations of
the instances of source & farget datasets are learned, retrieval of
relevant source instances 1s performed using soft-attention mecha-
nism and locality sensitive hashing, and then, augmented into the
moudel during training on the target dataset. Our approach simulta-
neously exploits the local instance level information as well as the
macro statistical viewpoint of the dataset. Using this approach we
have shown significant improvements for three major news classi-
fication datasets over the baseline. Experimental evaluations also
show that the proposed approach reduces dependency on labeled
data by a significant margin for comparable performance. With
our proposed cross dataset learning procedure we show that one
can achieve competitive/better performance than learming from a
single dataset.

weights in order to fit a subset of the original learning task. Transfer
learning suffers heavily from domain inconsistency between tasks
and may even have a negative effect [29] on performance. Domain
adaptation techniques aim to predict unlabeled data given a pool
of labeled data from a similar domain. In domain adaptation, the
aim is to have better generalization as source and target instances

are assumed to be coming from different probability distributions,

even when the underlying task is same.

We present our approach in an inductive transfer learning [26)
framework, with a labeled source (domain £ and task Tg) and

target (domain P and task 77) dataset, the aim is to boost the per-
formance of target predictive function f7(> ) using available knowl-

edge in g and Tg, given Tx # Tr. We retrieve instances from fg
based on similarity eriteria with instances from D, and use these

instances while training to learn the target predictive function ().

We utilize the instance-level information in the source dataset, and
also make the newly learnt target instance representation similar to
the retrieved source instances. This allows the learning algorithm
to improve generalization across the source and target datasets. We
use instance-based learning that actively looks for similar instances
in the source dataset given a target instance. The intuition behind
retrieving similar instances comes from an instance-based learning
perspective, where simplification of the class distribution takes
place within the locality of a test instance. As a result, modeling
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Let's define:

T = Task
D= Domain
S= source
t=target
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Taxonomy

Labeled Target

Transfer Learning

P~

Domain

TsI=Tt
Inductive Transfer
Learning

Source & target trained
simultaneously

Multi-task
Learning

_—
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Unlabeled source
domain

Self-taught
Learning

Labeled
Domai

Source
n only

Ds = Dt
'Ts =Tt

Unlabeled source
and target domain

Ds I= Dt

Transductive Transfer
Learning

Single task
disparate domain

Domain
Adaptation

Single task single
domain

Covariance Shift

Tsl=Tt
Unsupervised Transfer
Learning
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Transfer learning

Goal: applying knowledge learned from one task (often a related or even a completely different
task) to another task

Domains: The source and target domains can be different, but the knowledge learned from the
source can still be useful in the target. For example, knowledge from object detection in images
could be applied to facial recognition

Tasks: The tasks in the source and target domains are different, but the features or
representations learned from the source domain are reused in the target task
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Transfer learning: image classification

Classifying animals
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Transfer learning: natural language processing

WebText

Introduced by Radford et al. in Language Models are Unsupervised Multitask Learners Questiu n.
-

WebText is an internal OpenAl corpus created by scraping web pages with emphasis on document
guality. The authors scraped all outhound links from Reddit which received at least 3 karma. The

authors used the approach as a heuristic indicator for whether other users found the link M-"?‘Tﬁf !5 fh‘lE‘ Cﬂlﬂffﬂi Gf FI'GHC'E?

interesting, educational, or just funny.

WebText contains the text subset of these 45 million links. It consists of over 8 million documents
Answer:
for a total of 40 GB of text. All Wikipedia documents were removed from WebText since it is a [

common data source for other datasets.

The capital of France is Paris.

Writing text mimicking the content of

: Answering to questions
articles
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Domain adaptation

Goal: Focusing on adapting a model trained in a source domain to perform well in a different
but related target domain

Domains: The source and target domains are different, but the task remains the same. The key
challenge here is adapting the model to work well in the new domain, which has a different data
distribution than the source domain

Tasks: The task remains the same, but the data distribution is different
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Domain adaptation: object detection

Recognizing a dog Recognizing a dog
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Domain adaptation: sentiment analysis

Movie: Inception (2010)

Rating: % % % % (5/5)

Review: "Inception” is a mind-bending masterpiece by Christopher Nolan that challenges
the boundaries of storytelling and visual effects. The intricate plot, which weaves through
multiple layers of dreams, keeps viewers on the edge of their seats from start to finish.
Leonardo DiCaprio delivers a compelling performance as Cobb, a man driven by guilt
and loss, while the ensemble cast supports the film's complex narrative beautifully. The
special effects, particularly in the dream sequences, are breathtaking, making "Inception"

a truly immersive experience. This movie is not just a visual spectacle but also a thought-

provoking exploration of reality and perception.

Classyfing sentiment

¢
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Product: XYZ Front Load Washing Machine - 7kg

Rating: # % % 4 (4/5)
Review Title: Great performance but a bit noisy

Review: I've been using this washing machine for about 3 months now, and overall, I'm
quite satisfied with its performance. It handles large loads effortlessly, and the spin
cycle leaves clothes nearly dry, which saves time in the dryer. The different wash

settings are great, especially the quick wash option for lightly soiled clothes.

However, | did notice that it's a bit noisier than | expected during the spin cycle. It's not
unbearable, but if your laundry room is near living areas, it might be noticeable. Other
than that, the machine is efficient, energy-saving, and has a sleek design. For the price,

it's a solid purchase.

Classyfing sentiment
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Neural networks enable transferability

The inherent weighting scheme of neural network-based models allows transferability

This means that we can either:

« modify weights to generate a new model

» freeze weights and add another set of weights that are learned on the task and/or domain. The
combination of the 2 generate a new model

e optimizing parameters
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Which weights and parameters?

> h

Updating potentially all W, and potentially all P,

= learning rate, batch
size, regularization
techniques

W, = weights and biases of
the neural layers

W, W, W, W,

7

However, the update of all has a cost that is proportional with the dimension of the network
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Transfer learning in operation

Certain portions of the learned model are re-trained for fine-tuning, meaning that we alter the weights of the
network

The aim is to customize the model for the domain and/or task of analysis
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Domain adaptation in operation

The model remains the same

The aim is to predict unlabelled data given a pool of labelled data from a similar domain
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Application of foundation models

Foundation models are generated from massive data. This feature generates an output that is general
enough to be utilized in a multitude of domains

This is a peculiar strenght of these models and it largely applied in a domain adaption setting
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Thank you for your attention.

Questions?
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