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Transfer Learning

A Comprehensive Survey on
Transfer Learning

This survey provides a comprehensive understanding of transfer learning from the

TORINO

perspectives of data and model.

By FUZHEN ZHUANG™, ZHIYUAN Q1, KEYUu DuaN, DoNGBO X1, YONGCHUN ZHU,
HENGSHU ZHU, Senior Member IEEE, Hul X10NG, Fellow IEEE, AND QING HE

ABSTRACT Transfer learning aims at improving the
performance of target learners on target domains by transfer-
ring the knowledge contained in different but related source
domains. In this way, the dependence on a large number
of target-domain data can be reduced for constructing tar-
get learmners. Due to the wide application prospects, trans-
fer learning has become a popular and promising area in
machine learning. Although there are already some valuable
and impressive surveys on transfer learning, these surveys
intreduce approaches in a relatively isolated way and lack the
recent advances in transfer learning. Due to the rapid expan-
csion of the transfer leaming area, it is both necessary and
challenging te comprehensively review the relevant studies.
This survey attempts to connect and systematize the existing
transfer learming research studies, as well as to summarize
and interpret the mechanisms and the strategies of transfer
learning in a comprehensive way, which may help readers
have a better understanding of the current research status and
ideas. Unlike previous surveys, this survey article reviews maore
than 40 representative transfer learning approaches, espe-
cially hamogeneous transfer learning approaches, from the
perspectives of data and model. The applications of transfer
learning are also briefly introduced. In order to show the

performance of different transfer learning models, over 20 rep-
resentative transfer learning models are used for experiments.
The models are performed on three different data sets, that
is, Amazon Reviews, Reuters-21578, and Office-31, and the
experimental results demonstrate the importance of selecting
appropriate transfer learning madels for different applications
in practice.

KEYWORDS | Domain adaptation; interpretation; machine
learning: transfer learming.

NOMENCLATURE
Symbol Definition

n MNumber of instances.
m MNumber of domains.
™ Domain.

T Task.

A Feature space.

¥ Label space.

x Feature vector

iy Label.

X Instance set.

¥ Label set corresponding to X.
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In a nutshell: knowledge transfer
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Instance-based Inductive Deep Transfer Learning by
Cross-Dataset Querying with Locality Sensitive Hashing

Annervaz K M

Taxonomy
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Transfer Learning
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Learning

Source & target trained
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Learning
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Learning

¢

TORINO

Domain
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Unlabeled source
and target domain
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ABSTRACT

Supervised learning models are typically trained on a single dataset
and the performance of these models rely heavily on the size of
the dataset, Le, amount of data available with the ground truth.
Learning algorithms try to generalize solely based on the data that
is presented with during the training. In this work, we propose
an inductive transfer learning method that can augment learning
maodels by infusing similar instances from different learning tasks
in the Natural Language Processing (NLP) domain. We propose to
use instance representations from a source dataset. without inherit-
ing anything from the source learning model. Representations of
the instances of source & target datasets are learned, retrieval of
relevant source instances is performed using soft-attention mecha-
nism and locality sensitive hashing, and then, augmented into the
model during training on the target dataset. Our approach simulta-
neously exploits the local instance level information as well as the
macro statistical viewpoint of the dataset. Using this approach we
have shown significant improvements for three major news classi-
fication datasets over the baseline. Experimental evaluations also
show that the proposed approach reduces dependency on labeled
data by a significant margin for comparable performance. With
our proposed cross dataset learning procedure we show that one
can achieve competitive/better performance than learning from a
single dataset.

Ds =Dt
Ts |I=Tt

Unsupervised Transfer
Learning

Single task single

domain

Covariance Shift

weights in order to fit a subset of the original learning task. Transfer
learning suffers heavily from domain inconsistency between tasks
and may even have a negative effect [29] on performance. Domain
adaptation techniques aim to predict unlabeled data given a pool
of labeled data from a similar domain. In domain adaptation, the
aim is to have better generalization as source and target instances
are assumed to be coming from different probability distributions,
even when the underlying task is same.

We present our approach in an inductive transfer learning [26]
framework, with a labeled source (domain D¢ and task 7g) and
target (domain Dy and task 77 ) dataset, the aim is to boost the per-
formance of target predictive function f7(-) using available knowl-
edge in Dg and Ty, given Ts # Tr. We retrieve instances from g
based on similarity criteria with instances from Dy, and use these
instances while training to learn the target predictive function f ().
We utilize the instance-level information in the source dataset, and
also make the newly learnt target instance representation similar to
the retrieved source instances. This allows the learning algorithm
to improve generalization across the source and target datasets. We
use instance-based learning that actively looks for similar instances
in the source dataset given a target instance. The intuition behind
retrieving similar instances comes from an instance-based learning
perspective, where simplification of the class distribution takes
place within the locality of a test instance. As a result, modeling
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Neural networks enable transferability

The inherent weighting scheme of neural network-based models allows transferability

This means that we can either:

« modify weights to generate a new model

» freeze weights and add another set of weights that are learned on the task and/or domain. The
combination of the 2 generate a new model
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Transfer learning in operation

Certain portions of the learned model are re-trained for fine-tuning, meaning that we alter the weights of the
network

The aim is to customize the model for the domain and/or task of analysis
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Domain adaptation in operation

The model remains the same

The aim is to predict unlabelled data given a pool of labelled data from a similar domain
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Application of foundation models

Foundation models are generated from massive data. This feature generates an output that is general
enough to be utilized in a multitude of domains

This is a peculiar strenght of these models and it largely applied in a domain adaption setting
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Thank you for your attention.

Questions?
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