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Applied Data Science Project

L3 - Model & data-centric data science projects
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Artificial intelligence

iterative processes meant to
refine the quality of the solution
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Data + Model

artificial intelligence = data + model (software + algorithm)
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Data-centric vs Model-centric

¢
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Data-centric: the focus is on aequiring’
further examples or cleaning the
collected ones to retrain the algorithm
an generate a new model.

The output of this activity is extending
the dataset that is used for training

Model-centric: the focus is on
modifying the'algorithm by extending
the neural architecture (for instance
having more layers, new residual
connections) and then train it with the
data at disposal
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Data

data is vital for creating any sort of artificial intelligence

nnnnnnnnnn

TORINO l-' k linksfoundation.com
! | n S COPYRIGHT ©2021 LINKS

BASEION FOR INNOYATTON




Data

improving datd has a bigimpact to artificial intelligence even
more than model optimization

unless of radical changes in the code thus not optimization
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Inspecting steel sheets for defects

Examples
of defects

Baseline system: 76.2% accuracy
Target: 90.0% accuracy

Andrew Ng
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Improve code vs improve data

TORINO

Baseline 76.2%
Model-centric +0%
(76.2%)
Data-centric +16.9%
(93.1%)
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Other examples

TORINO

Baseline 75.68% 85.05%
Model-centric +0.04% +0.00%
(75.72%) (85.05%)

Data-centric +3.06% +0.4%
(78.74%) (85.45%)
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Easier step

Improving data turns out to be key for a betterartificialintelligence

solution

NBE8: Improving a code is different than designing a new, breakthrough,
code however the effort for the latter is way higher than improving data
and the return of the effort (may) be very high

Take home message: we consider the data improvement as an easier
and necessary step when developing a machine intelligence before
starting a new venture
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Data improvement

Strategies for data improvement:

- more examples augmentation

- completeness _
cleaning

- consistency
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Augumentation

TORINO

Take or generate new examples
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Consistency
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Consistency

Task: Label cars
Annotator 1

k
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' CAR _§—
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Consistency

Task: Label cars

Annotator 2
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Consistency

Consistency in annotation turns out to be crucial for minimizing the potential error of the
intelligence

However, ensuring a consistent dataset is a not obvious task

It involves:

- how the task has been conceived

- how the intervention of the human has been designed
- how did human annotators perform their task

- how the dataset has been packaged
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Small Data and Label Consistency

x X X
A 4 X X t
X X
S d y q
(rom) o) X (o)
X
Voltage Voltage Voltage
. - Small data
- Small data - Big data . Clean (consistent)
Noisy labels - Noisy labels labels

Andrew Ng
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Completeness
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Completeness

Annotator 1

Task: Label cars

TORINO
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Completeness

Task: Label cars

Annotator 2
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Completeness

Completeness in annotation turns out to be crucial for improving coverage to the intelligence
However, ensuring a complete dataset is a not obvious task

It involves:

* how the task has been conceived

* how the intervention of the human has been designed
* how did human annotators perform their task

* how the dataset has been packaged
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Good data

Big dat all data

good data

Good data is:
« Defined consistently (definition of labels y is unambiguous)
« Cover of important cases (good coverage of inputs x)
« Has timely feedback from production data (distribution covers data
drift and concept drift)
« Sized appropriately

We also refer to good data with the concept of clean data
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Example: Clean vs. noisy data
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0.3

250 500 750 1000 1250 1500
Number of training examples

Note: Big data problems where there’s a long tail of rare events in the input (web
search, self-driving cars, recommender systems) are also small data problems.

Andrew Ng
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Model

model encapsulates the intelligence in an executable
environment that embeds both training data and algorithm
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Model

Improving a model is a hard task because it inherits the challenges related to
optimize both data and algorithm
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Model improvement

Strategies for model optimization

* Any change in the data, if statistically relevant, is propagated to the final output of the model.

This links to the previous topic

« Change in the algorithm, for instance the addition of a new layer in a neural architecture, or
eventually, a brand new architecture

« Change in the hyperparameter set, for instance n_layers, or learning rate. This change
modifies the parameter weights
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Thank you for your attention.

Questions?
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CONTACTS

Giuseppe Rizzo

Program Manager (LINKS Foundation) and
Adjunct Professor (Politecnico di Torino)

giuseppe.rizzo@polito.it
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