

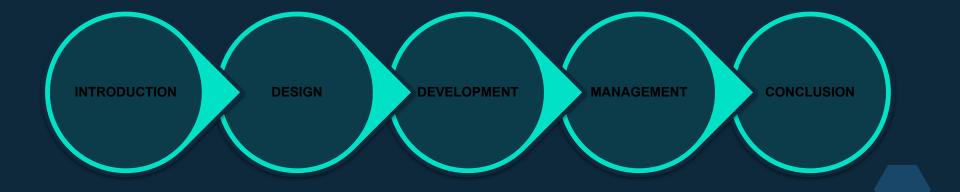
Politecnico di Torino

APPLIED DATA SCIENCE PROJECT A.A 2021/2022 PPHI PROJECT

 \sim

PRESENT BY: TENKAMTE KENGNE ARSÈNE BOLIVAR AND MAMMADLI FIDAN

COMPAGNY SUPERVISORS:


- LUCA SCHIATTI
- **ANH-DUNG LE**
- **GIUSEPPE GIORDANO**

SUPERVISE BY:

GIUSSEPPE RIZZO

ML Model

ÿ

predictive model to determine if their Health insurance policyholders would be also interested in a dehicle hsurance TEE A creation of a secure area that guarantees optimal protection for highly sensitive data in all states, with respect to the confidentiality and integrity

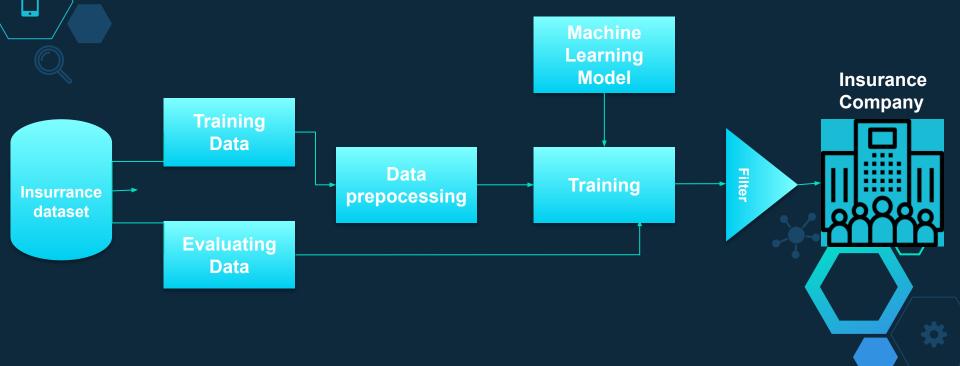
DESIGN

¥

Presentation of the general aspect with also the ongoing scenerio of the different point of the projet

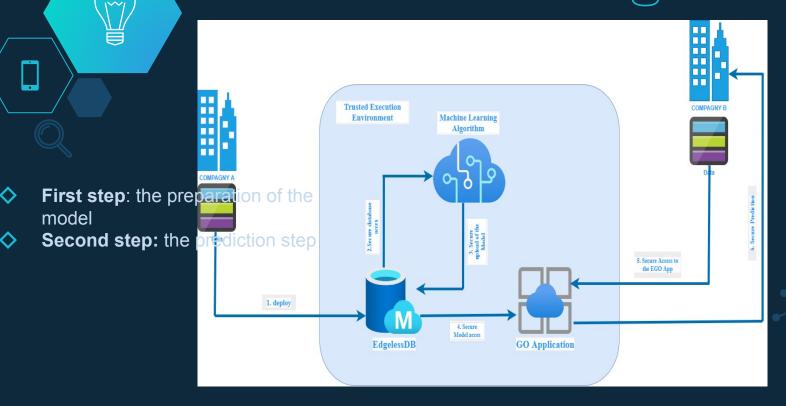
Persona Canvas: Cross Insurance Model

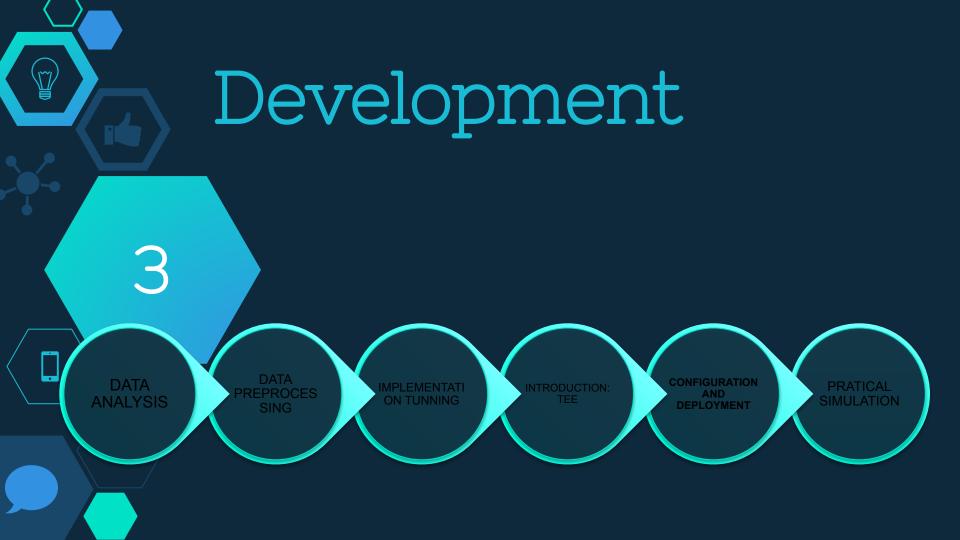
Frustrations	Needs					
The company don't know who want to apply to a vehicle insurance	NeedsThe companies need to optimize it's business model and revenue.rance baniesA model to predict which customer will apply to the vehicle insurance					
customer will apply to						



Persona Canvas: TEE

Frustrations	Needs
The absence of confidence between the different companies involve on the project. The lack of privacy regarding the sharing of the data through the cloud.	Creation of a secure enclave environment. Storage of the dataset on the database
The lack of security throw the download and the processing of the model. The lack of privacy through the evaluation of the data.	Execution of the model in an enclave environment. Creation of a app that will be launch into the enclave




Functional Diagram: Cross Insurance Model

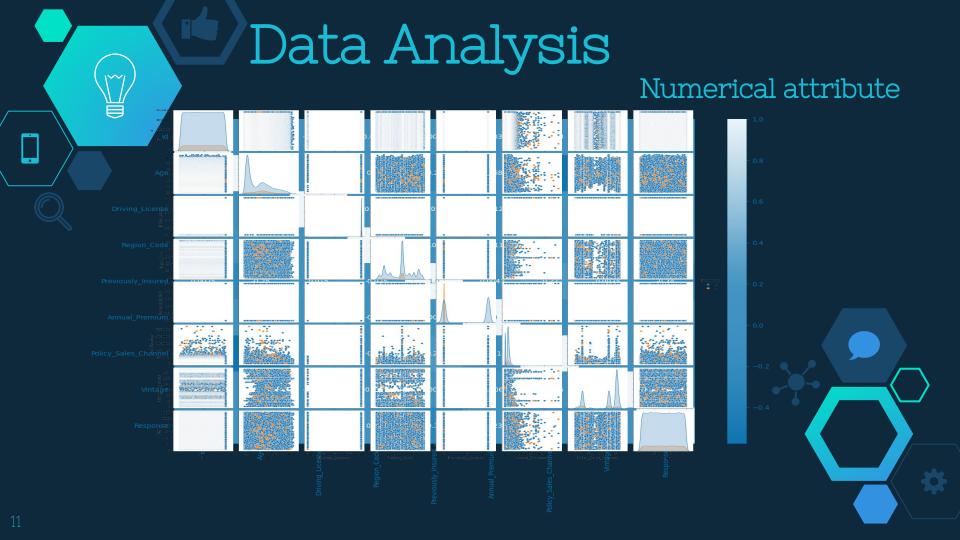
\~~/

Functional Diagram: TEE

Data Analysis

Numerical attribute

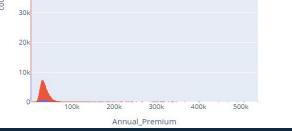
No missing values on the different features

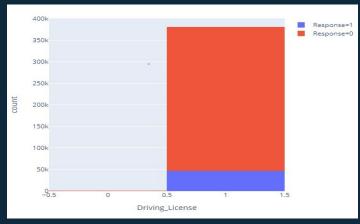

♦ Few amount of uniques

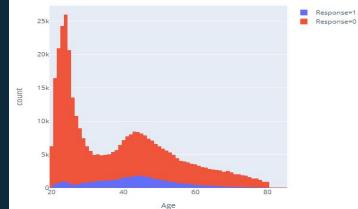
 \sim

 \diamond

	Missing value, %	N unique value	dtype
id	0.0	381109	int64
Gender	0.0	2	object
Age	0.0	66	int64
Driving_License	0.0	2	int64
Region_Code	0.0	53	float64
Previously_Insured	0.0	2	int64
Vehicle_Age	0.0	3	object
Vehicle_Damage	0.0	2	object
Annual_Premium	0.0	48838	float64
Policy_Sales_Channel	0.0	155	float64
Vintage	0.0	290	int64
Response	0.0	2	int64
Gender_Code	0.0	2	int8
Vehicle_Age_code	0.0	3	int8
Vehicle_Damage_code	0.0	2	int8

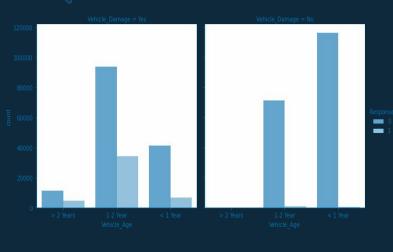


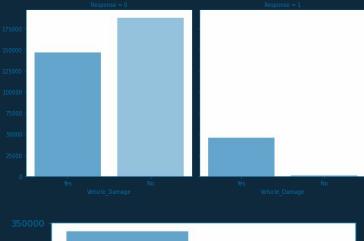

Data Analysis

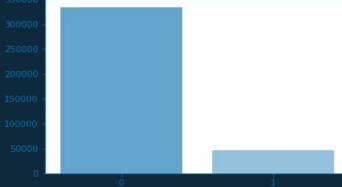

Numerical attribute

 \sim

The majority of the customers that apply to vehicle insurance have a driving license There is and interval of age responsed also interval amount of annual premium in which customers a more willing to subscribe to a vehicle insurance

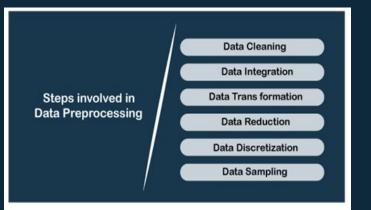

 \Diamond


Data Analysis


Categorical attribute

 \sim

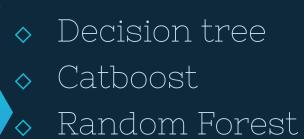
Ē

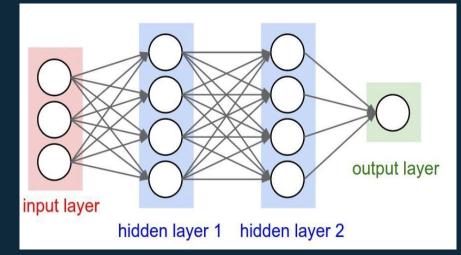


•

Data Preprocessing

Dropping of the ID feature


- Use of the **One-hot encoding** on the feature Vehicule_Age
- Label Encoding: with the OrdinalEncoder for the feature Vehicle_name and Gender
- **Spliting** of the dataset in trainning and test data
 - Unbalanced data
 - Balanced data (SMOTE)
- Four data files to utilize in the construction and the analysis of our models



Normalisation

	Gender	Age	Driving_License	Region_Code	Previously_Insured	Vehicle_Damage	Annual_Premium	Policy_Sales_Channel	Vintage
count	3.811090e+05	3.811090e+05	3.811090e+05	3.811090e+05	3.811090e+05	3.811090e+05	3.811090e+05	3.811090e+05	3.811090e+05
mean	8.502237e-16	-9.258629e-16	-2.971048e-15	-6.254366e-16	-2.781409e-15	1.470378e-15	-5.018194e-16	-4.104990e-15	-6.921441e-17
std	1.000001e+00	1.000001e+00	1.000001e+00	1.000001e+00	1.000001e+00	1.000001e+00	1.000001e+00	1.000001e+00	1.000001e+00
min	-1.085134e+00	-1.213453e+00	-2.164130e+01	-1.994638e+00	-9.196380e-01	-1.009801e+00	-1.622853e+00	-2.048455e+00	-1.725174e+00
25%	-1.085134e+00	-8.911132e-01	4.620794e-02	-8.608404e-01	-9.196380e-01	-1.009801e+00	-3.578308e-01	-1.531887e+00	-8.646631e-01
50%	9.215448e-01	-1.819661e-01	4.620794e-02	1.217845e-01	-9.196380e-01	9.902940e-01	6.417254e-02	3.867931e-01	-4.151927e-03
<mark>75</mark> %	9.215448e-01	6.561169e-01	4.620794e-02	6.508902e-01	1.087384e+00	9.902940e-01	5.133064e-01	7.373213e-01	8.683108e-01
max	9.215448e-01	2.976962e+00	4.620794e-02	1.935861e+00	1.087384e+00	9.902940e-01	2.960534e+01	9.402586e-01	1.728822e+00

Befteret Heencomaaiissatioon

Keras Sequential ModelMultilayer Perceptron

ÿ

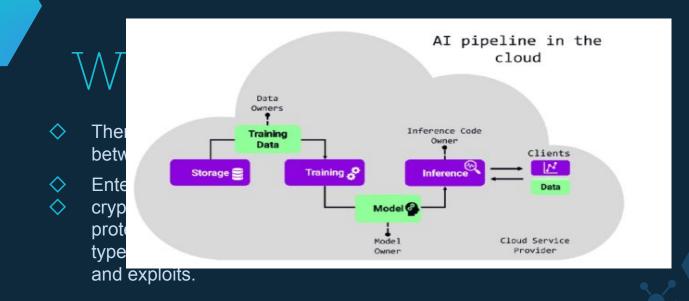
Tuning

	precision	recall	f1-score	support		precision	recall	f1-score	support
0	0.90	0.95	0.92	100320	0	0.94	0.84	0.89	62157
1	0.38	0.24	0.30	14013	1	0.80	0.93	0.86	43313
accuracy			0.86	114333	accuracy			0.88	105470
macro avg	0.64	0.59	0.61	114333	macro avg	0.87	0.89	0.88	105470
weighted avg	0.84	0.86	0.85	114333	9 weighted avg	0.89	0.88	0.88	105470

•

\~~/

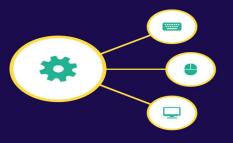
To find the best parameters of the different models we run a GridsearchCV with a number of cv=3 and which give us the opportunity to bypass the training and check the score on the testing data (validation data)


Implementation Tuning

Randor	n Forest	<pre>max_features = ['auto'] criterion = ['mse'] bootstrap = [False] n_estimators = [200]</pre>	0.977124522884 219	8843	
CatBoo	st	n_estimators;==[300] = [100, 200, 500, 1000] depth =:[5]stimators = [100, 200, 500, 1000] learningerate==[0,0,1],6,4,5,7,8,9,10] border[count=[50]e =[0.03,0.001,0.01,0.1,0.2,0.3] ctr_border[count=[100]]2,5,10,20,50,100,200] thread_count=[50,5,10,20,100,200] thread_count = 4	0.981938		
Keras S model	equential	epoch=[100] InputLayer=[64,32,16,8]	0.957599893722 543	22	
Multilay Percept		Hidden_layer_sizes = (50,50,50) Activation = ['relu'] Solver = ['adam'] Alpha = [0.0001] Iearning_rate = ['adaptive']	0.963419350955 655	52	

\~~/

E


TEE

20

•••

Configuration

FSGSBASE

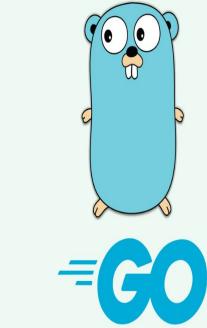
\~~

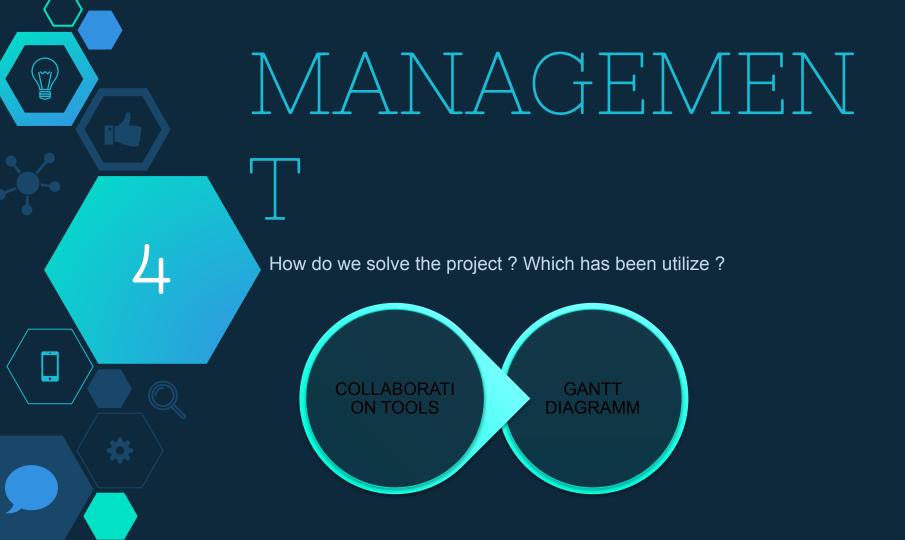
which is a feature in recent processors which allows direct access to the FS and GS segment base addresses

Intel SGX driver

To improve data protection and enhance application code security

EdgelessRT


An SDK for Trusted Execution Environments (TEE)


Ego is a framework for building confidentia<mark>l apps in Go</mark>

⊳ Ego

COLLABORATION TOOLS

- Kanbanflow : for the follow up of the team work collaboration.
- Scrum poker: to estimate the complexity and effort of the different task.
- Google Collab: online cloud-based Jupyter notebook environment that allows us to train our machine learning and deep learning models on CPUs, GPUs, and TPUs.

GANTT DIAGRAMM

	GANTT	54	\leq	2021						
	Nom	Date de d	Date de fin	Semalue 43	Semaine 44	Semalue 45 08/11/2021	Semalue 46	Semalue 47 22/11/2021	Semaine 48 29/11/2021	Semalue 49 06/12/2021
0	Data Analysis #1 of th				CITTINGS I	Cont i mada i	Lat (hassa)	and Change I	Aut I Hadde I	Sour Factorian I
0	Overview of the Edgel	27/10/20	28/10/2							
0	Evaluation of the ML	28/10/20	29/10/2							
0	Prepocessing Step #2	02/11/20	02/11/2							
0	Data Analysis #2 of th	01/11/20	02/11/2							
0	Model Selection #1	02/11/20	05/11/2							
0	First steps Edgeless DB	03/11/20	05/11/2							
0	Writing a Report #1	08/11/20	10/11/2							
۲	Model Selection #2	09/11/20	10/11/2							
0	Research on Edgeless	11/11/20	12/11/2							
0	Pratical Stuff on Edgel	15/11/20	19/11/2							
0	Overview of the Desig	16/11/20	17/11/2							
0	Preprocessing Step #2	18/11/20	19/11/2							
0	Access to Azure VM	24/11/20	29/11/2							
0	Neural Network Resea	25/11/20	29/11/2	-						
0	Writing a Report #2	24/11/20	29/11/2							
0	Impelementation of P	01/12/20	07/12/2							
0	Design Pillar and Man	06/12/20	09/12/2							

\~~/

Thanks!

For your time
 And for your attention

Any questions?

