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Abstract: Our concern during this project was to present 

a suitable solution to solve a prediction problem and in 

the meantime to build a Machine Learning Data 

Pipeline (from Data Preparation, to training, to 

inferencing) within a Trusted Execution Environment 

to enable data Privacy at all stages of the process. For 

this purpose, we use different approach study during 

our past experiences and also a great amount of new 

concepts that we discover through our own researches.  

I. CROSS SELL PREDICTION 

INSURANCE PROBLEM 

A. PROBLEM OVERVIEW 

a. Overview 

      In this report we proposed a model solution capable of 

predicting the interested of customers in vehicle insurance 

in base of their Health insurance through the exploration of 

a dataset of 381110 reviews. Each one of them is describe 

by 12 attributes: the id, Gender, Age, Driving License, 

Region Code, Previously Insured, Vehicle Age, Vehicle 

Damage, Annual Premium, PolicySalesChannel, Vintage 

and Response. 

     The Dataset is divide in two portion: 

 A development set: containing 304888 reviews 

that will be used to construct our classification 

model. 

  An evaluation set: containing 76222 reviews that 

will be used to computed our final result 

 

b. Data analysis 

Regarding the exploration of the dataset we can 

observe that between the 12 attributes we have 9 numerical 

attributes and we have 3 categorical attributes that need to 

be represented in a suitable way.  

 

Fig 1: evaluation of missing data and unique value present 

in each feature. 

 

Fig 2: correlation matrix. 

The analysis execute on the dataset shows there is no 

missing values on the different features. And also there are 

many features with very few unique values which is and 

information that we will use during the preprocessing step. 

Then we plot the correlation matrix of the different 

numerical attributes in order to verify if there’s a relation 

between some of them. The figure 2 shows that the 

correlation is not that strong as the different values on the 

matrix are lower than 0.4. But we do find some interesting 

relation as show on the figure 3 between the age, the annual 

premium and driving license respect to the response. There 

is and interval of age and also interval amount of annual 

premium in which customers a more willing to subscribe to 

a vehicle insurance and also the majority of the customers 

that apply to vehicle insurance have a driving license.  
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      Fig 3: relation between different features and the         

response. 

Regarding the categorical features in some cases did notice 

useful relation between some features and the target value. 

The figure 4 show the majority of the customer that did 

apply to the vehicle insurance are those who had a vehicle 

damage. On the figure 5 we can visualize that most of the 

vehicles that have been damage are those between 1-2 year.  

And at last we also noticed how the gender where pretty 

much equally distributed among the majority of the 

different attributes such as the ages, previously insured or 

target value to.  

This comprehension will also be useful in order to 

understand how our models will understand and interpret 

the dataset. Finally, it’s important to view (figure 6) how 

the target value is highly unbalance. Actually we have a 

more important amount of 0 than 1 and we will also have 

to take care of it during the following steps. 

 

Fig 4: relation between the vehicle damage and the target.  

 

Fig 5: relation between the vehicle damage, vehicle age 

and the target. 

 

Fig 6: response feature. 

 

B. PROPOSED APPROACH 

 
a. Preprocessing 

Relating to data cleaning we firstly drop the id features 

because of it’s non relevance for the algorithm. In order to 

have the best performance we use to implement the one-hot 

encoder on the vehicle_Age feature to convert its different 

values into column and assigned a 1 or 0 (true or false in 

base of the presence on the row). It’s a suitable approach 

because of the fact the vehicle age doesn’t have many 

unique value. We decided to use the label on the other 

categorical features to transform them into numerical 

features.  

 

Fig 6: Description of a portion of the dataset before the 

normalization. 

After that a quick look on the description of our 

dataset shows on figure 7 allow us to view a great 

unsteadiness on the values range of the different features. 



And so to prevent and inaccurate, slow and inefficient 

solution we chose to normalize the dataset using the 

standardscaler algorithm. 

 

Fig 6: Description of a portion of the dataset after the 

normalization. 

we decided to split the dataset into a training part 

(80%) and a test part (20%) using a stratify parameter 

activate in order to have the same percentage of different 

target value on the two parts. 

      As we have unbalance target value that can have a 

negative influence on algorithms like Logistic Regression 

we decided after utilizing pure random sample to obtain 

training data and a test data set to balance through the 

SMOTE concepts the training data (in terms of response) 

using oversampling and undersampling to achieve a 50/50 

split. we received four data files to utilize in the 

construction and analysis of our models. 

 We used the SMOTE-ENN method to balance the 

dataset. SMOTE ability to generate synthetic examples for 

minority class and ENN (Edited Nearest Neighbor) ability 

to delete some observations from both classes that are 

identified as having different class between the 

observation’s class and its K-nearest neighbor majority 

class. It’s basically compute in 8 step (with repetition) 

which are the following:  

1. (Start of SMOTE) Choose of a random data from 

the minority Class  

2. Calculating the distance between the random data  

3. Multiply the difference with a random number 

between 0 and 1, then add the result to the minority 

class as a synthetic sample. 

4. Repeat step number 2–3 until the desired 

proportion of minority class is met. (End of 

SMOTE) 

5. (Start of ENN) Determine K, as the number of 

nearest neighbors. If not determined, then K=3. 

6. Find the K-nearest neighbor of the observation 

among the other observations in the dataset, then 

return the majority class from the K-nearest 

neighbor. 

7. If the class of the observation and the majority class 

from the observation’s K-nearest neighbor is 

different, then the observation and its K-nearest 

neighbor are deleted from the dataset. 

8. Repeat step 2 and 3 until the desired proportion of 

each class is fulfilled. (End of ENN) 

 

Fig 7: SMOTE-ENN. 

b. Model Selection: 

We will now present the following models that have 

been implement for this project: 

 Decision Tree: it’s adopts a greedy approach. The 

Best attribute for the split is selected locally at 

each step, it is not a global optimum.  To make 

that "Best" split it define some Measure of 

impurity like the Gini index or the Entropy 

 Logistic Regression: is a predictive analysis used 

to predict a data value based on prior observations 

of a data set.  The analysis is more accurate to 

conduct when the dependent variable is binary.   
 Random Forest Regressor: used to solve 

regression and classification problems. Random 

forests is consist of many decision trees and 

predictions from all trees are pooled to make the 

final prediction. Increasing the number of trees 

increases the precision of the outcome 

 KNN Classifier: is a data classification algorithm 

that attempts to determine what group a data point 

is in by looking at the data points around it. It’s 

require The set of stored records and a distance 

metric to compute distance between records. 

 LGBM classifier:  is a fast, distributed, high-

performance gradient boosting framework based 

on decision tree algorithm, used for ranking, 

classification and many other machine learning 

tasks. it splits the tree leaf wise with the best fit 

whereas other boosting algorithms split the tree 

depth wise or level wise rather than leaf-wise. 

 

 

 

Artificial Neural Network (Ann) 

 

ANN are networks that emulate a biological neural 

network and they use a reduced set of concepts from 

biological neural systems. The basic idea is to break the big 

task of learning and inference into a number of micro-tasks. 

These micro-tasks are not independent but interdependent. 
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In the neural network each layer is consists of a number of 

neurons that are connected from the input layer via the 

hidden layer to the output layer. 

 
Fig 8: Artificial Neural Network. 

- Multilayer Perceptron (MLP): This algorithm 

has input and output layers, and one or 

more hidden layers with many neurons stacked 

together. And while in the Perceptron the neuron 

must have an activation function that imposes a 

threshold, like ReLU or sigmoid, neurons in a 

Multilayer Perceptron can use any arbitrary 

activation function with also Backpropagation 

mechanism. 

- Keras Sequential model: Sequential model is a 

building models as a linear stack of layers. First, 

you instantiate your Sequential model object and 

then, you add layers to it one by one using 

the add() method. 

 

c. Implementation tuning 

Regarding this section, we first of all split the 

development dataset in training set (75%) and test set 

(25%). We use the training set to train our different models 

using also the default configuration for them in order to find 

which perform better than the others.  we compute the 

Accuracy, 𝑭𝟏 score, Precision, and ROC AUC of those 

different model and test them with the test set. The result is 

given on the tables below with the unbalance and balance 

sample. 

 

Table 1:  Score of the models by default with unbalance 

data 

 

 

Table 2: Score of the models by default with balance data 

The ROC_AUC using the MLP Multilayer Layer 

Perceptron (MLP) and the Keras sequential Model give 

us respectively 0.95209840 and 0.95248197. 

The visualization of the classification_report give us a 

quick look of the precision and recall of the result and we 

notice that models didn’t perform well with unbalance data 

because we have some score of 0.38 and 0.24 for the 

precision and recall of the 1. On the other side the models 

perform much better well with balance data. We have a 

score of 0.80 and 0.93 for the precision and the recall.  

 

 

Table 3: Classification_report score of the model 

(Catboost) by default with balance data 

 

 

Table 4: Classification_report score of the model 

(Catboost) by default with balance data. 



 

Fig 11: ROC curves of Classifers. 

The hyperparameter has been defined for the 

Catboost, Random forest classifier, Multilayer Layer 

Perceptron and Keras Sequential model which where the 

best performing models by default. 

Model Parameter configuration 

Random 

Forest 
max_features = ['auto', 'sqrt'] 

criterion = [‘mse’] 

bootstrap = [True, False] 

 n_estimators = [100, 300, 500, 1000] 

 

CatBoost  n_estimators = [100, 200, 500, 1000] 

 depth = [3,1,2,6,4,5,7,8,9,10] 

 learning_rate 

=[0.03,0.001,0.01,0.1,0.2,0.3] 

 border_count =[32,5,10,20,50,100,200] 

 ctr_border_count=[50,5,10,20,100,200] 

 thread_count = 4 

Keras 

sequential 

 epoch=[20,25,50,100] 

 InputLayer=[255,8] 

MLP Hidden_layer_sizes 

= [(50,50,50), (50,100,50), (100,)] 

Activation = ['tanh', 'relu'] 

Solver =['sgd', 'adam'] 

Alpha = [0.0001, 0.05] 

learning_rate = ['constant','adaptive'] 

 

Table 5: set of parameter of the different model 

C. RESULT: 

The table 6 show the ROC AUC score of the execution 

on the test set of the different models with their best hyper 

parameter. Through the execution of the GridSearch we 

had the opportunity to retrieve the best configuration of our 

different model. As we can visualize on the Table 6 the 

score of the CatBoost is higher than all the others with a 

value of 0.981938 follow by the Random Forest, then the 

Multilayer Perceptron and Keras Sequential. Impressively 

the gap between the differents score is not really big and 

also having a quick look on their classification_score gave 

us also the same interpretation regarding the Precision and 

the Recall. Also the computation of the different models 

with test set gave us the same order of score. As the models 

was performing with a very high score by default there was 

a possibility that the models where being overfitting but the 

fact of using the GridSearch with number of cross-

validation = 3 give us the opportunity to bypass the training 

data and check for the score on testing data (validation data) 

allow us to negate that hypothesis. 

Model Parameter configuration ROC AUC 

Random 

Forest 
max_features = 'auto' 

criterion = ‘mse’ 

bootstrap =  False 

 n_estimators = 200 

 min_samples_split  = 2 

min_samples_leaf' = 2 

 

0.977124522

8843219 

CatBoost  n_estimators = 300 

 depth = 9 

 max_depth = 5 

 learning_rate = 0.01 

 border_count = 50 

 ctr_border_count = 10 

 0.981938 

Keras 

sequential 

 epoch=[100] 

 InputLayer=[64,32,16,8] 

 0.957599893

7222543 

MLP Hidden_layer_sizes 

= (50,50,50) 

Activation = ’relu' 

Solver = 'adam', 

Alpha = 0.0001 

learning_rate = 'adaptive' 

 

 0.963419350

9552655 

Table 6: best parameter of models with test score. 

 This final model compute will be use inside our 

Trusted environment execution that we are going to deploy. 

II. TRUSTED EXECUTION 

ENVIRONMENT 

A. INTRODUCTION TO THE TEE 

A Trusted Execution Environment (TEE) is an 

environment for executing code, in which those executing 

the code can have high levels of trust in the asset 

management of that surrounding environment because it 

can ignore threats from the “unknown” rest of the device. 

nowadays to run AI workloads at scale, Enterprises are 

increasingly relying on the public cloud and in this context, 

data security and privacy can become key concerns. And 

even if the use of cryptography has been seen as the 

common solution to protecting data in the private cloud or 

in the public cloud in all states, this type of mechanism 

became more vulnerable to attacks and exploits because of 
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his accessed by more users. So it’s a good resolution to rely 

on TEE that can be used on-premises, in the cloud or within 

embedded hardware platforms. 

Trusted Execution Environment add a layer security 

to an existing solution and can be use with confidential 

computing technology, without any changes in the 

application itself. Some other advantages in deploying in a 

trusted execution environment include: 

 A Rapid deployment: Advanced TEE solutions are 

quick to deploy 

 The Insurance of data confidentiality and integrity: 

Ensuring the security of sensitive data in transit, in use, 

and at rest for critical applications and data. 

 The Secure deployment and execution of 

applications 

 A Trusted Collaboration: A TEE is safe 

environment for multiple parties to share and process 

data. 

 A Simplified Compliance: Achieve compliance with 

key management and encryption through an easy-to-

use cryptographic API. 

B. GENERAL SCHEMATIC OF TH E 

DEPLOYMENT 

a. Overview plan 

In a General way let consider the following scenario: 

we have an AI pipeline schematic show by the figure 12. 

The AI model, the training data, and both the code for 

training and inference are provided by different 

stakeholders. In the meantime, all these stakeholders must 

have confidence in each other and the cloud service 

provider with their valuable data or intellectual property. 

Concerning our project, we have a Health Insurance 

company that wants to build a predictive model to 

determine if their Health insurance policyholders would be 

also interested in a Vehicle Insurance. And also the 

company would like to monetize that model with other 

insurance companies which could use the model to target 

new clients. In fact, the different companies involve need 

to have confidence in each other and a confidential 

computing is a key technology that can solve these 

fundamental.  

 

 

Figure 12: AI pipeline in the cloud 

b. Functional Description. 

We will firstly make a recapitulation and present the 

existing difficulties and the needs between the different 

companies involve through the table 7 that our TEE must 

respond concerning our project. As you can see the main 

preoccupation is the assurance of a high security and the 

respect too of the privacy. Regarding now The 

implementation, it has been done on an Azure virtual 

machine provided by to us by the Accenture company. 

And the following functional diagram (figure 13) 

represent the main operation of the collaboration between 

two companies in and Trusted Environment Execution. 

We can distinguish two main steps concerning the 

running of our project. 

 First Step: Preparation of the Model 

- The company A upload the training data into the 

Database 

- The deployment of the training data into the Cross 

Insurance Machine Learning Algorithm  

- Creation of the model and saving into de Database 

 Second Step: Prediction step 

- The company B upload his data inside the Application 

programming interface 

- The API deploy the model from the Database and 

process with the inferencing of the data 

- Return the predicted result. 

DIFFICULTIES NEEDS 

The absence of confidence 

between the different 

companies involve on the 

project. 

 

Creation of a secure 

enclave environment 

 

The lack of privacy 

regarding the sharing of 

the data throw the could 

Storage of the dataset on a 

Secure Database 

 

The lack of security 

through the download and 

the processing of the 

model 

Execution of the model in 

the enclave environment. 

 



 

The lack of privacy 

through the evaluation of 

the data 

 

Creation a app that will be 

launch into the enclave      

 

Table 7: Evaluation of the needs and difficulties 

 

 

Figure 13: Functional Diagram 

C. CONFIGURATION AND DEPLOYMENT 

a. Configuration 

In order to setup our TEE inside our Azure virtual 

machine we have install and use a set of resources and 

services. 

 Intel SGX driver: is an Intel technology for 

application developers seeking to protect select 

code and data from disclosure or modification. 

 FSGBASE: which is a feature in recent processors 

which allows direct access to the FS and GS 

segment base addresses 

 EdgelessRT: SDK for Trusted Execution 

Environments (TEE) build on top of open enclave.  

It adds support for modern programming languages 

(in particular Go) and facilitates the porting of 

existing applications. 

This are the principal tools that were install to create the 

enclave. Regarding now the different services that we have 

implemented we can enumerate: 

 EdgelessDB:  is an open-source MySQL-

compatible database for confidential computing. 

Like a normal SQL database, EdgelessDB writes a 

transaction log to disk and also keeps cold data on 

disk. With EdgelessDB, all data on disk is strongly 

encrypted. Data is only ever decrypted inside SGX 

enclaves. 

 EGO:  is a framework for building confidential 

apps in Go. Confidential apps run in always-

encrypted and verifiable enclaves on Intel SGX-

enabled hardware.  

 GOLANG: is an open source programming 

language used for general purpose.  Most similarly 

modeled after C, Go is statically typed and 

explicit. We did use this language in order to code 

our machine learning Algorithm for our project. 

Also Basically some advantages it that Golang has 

a High performance in network tasks and 

multiprocessing, with and Excellent code 

readability and ease of use. One last is that he is a 

Static typing and performance. 

 

b.  Deployment  

Relating to the implementation we first of all install 

the different tools to setup the enclave and we also install 

the different resources. Then we begin by launching the 

EdgelessDB using a support call the manifest to instantiate 

and grant specific access to the different actors with their 

proper authentication keys that will have access to the 

Database. I our case will have two actors who are the 

company A that will upload his data inside the database 

and the machine learning algorithm that will download the 

data for the training step and also save the model and 

download it from the database when necessary. Speaking 

now about the machine learning model, we code it in 

golang and we implemented a Neural Network model 

using the parameters similar as much as possible to the one 

that we implemented in python. Finally, we deploy and 

API in enclave that will essentially receive the request 

form the company B, then he will deploy the save model 

and do the inference service and send the result to client. 

A final precision is to say that all this process is run inside 

a Trusted Environment so it is an added value in terms of 

security and none of the stakeholder involved we be able 

to visualize the data that is none of his concern.  

CONCLUSION 

Concerning our cross insurance prediction model 

between all the models tested the most suitable one was 

the Catboost Classifier. But we can also notice that the 

order models retained at the end did also perform well 

because they all have a final roc auc score in a very close 

interval. As we did obtain a high score with the best 

parameter, we can be sure that our model is able to predict 

in a very efficient way the different customer that will be 

willing to take a Vehicle Insurance. On the order side we 

also succeed creating a Trusted Environment in which the 

company can monetize its model selling the inference job 
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to another in a Trusted and Secure way. To the question of 

why we use the Neural Network instead of the Catboost 

model, it’s simply because as today, the catboost machine 

learning model is not available in Golang or it’s not very 

much efficient. Unfortunately, as the Golang is a fairly 

young language and not widely used the ML domain is not 

that much develop. And despite that and also the lack of 

some parameters we were quite surprise to see how the 

model was still performing very well during our different 

test. Ultimately another extension that could have been 

done regarding the security and the privacy is the setup of 

a remote access control for the client in order for him to be 

sure that his data will be send in an enclave environment 

before uploading them.  

 

 


