

PRIVACY PRESERVING HEALTH INSURANCE

TENKAMTE KENGNE Arsene Bolivar MAMMADLI Fidan

 S292635@studenti.polito.it s293669@studenti.polito.it

Abstract: Our concern during this project was to present

a suitable solution to solve a prediction problem and in

the meantime to build a Machine Learning Data

Pipeline (from Data Preparation, to training, to

inferencing) within a Trusted Execution Environment

to enable data Privacy at all stages of the process. For

this purpose, we use different approach study during

our past experiences and also a great amount of new

concepts that we discover through our own researches.

I. CROSS SELL PREDICTION

INSURANCE PROBLEM

A. PROBLEM OVERVIEW

a. Overview

 In this report we proposed a model solution capable of

predicting the interested of customers in vehicle insurance

in base of their Health insurance through the exploration of

a dataset of 381110 reviews. Each one of them is describe

by 12 attributes: the id, Gender, Age, Driving License,

Region Code, Previously Insured, Vehicle Age, Vehicle

Damage, Annual Premium, PolicySalesChannel, Vintage

and Response.

 The Dataset is divide in two portion:

 A development set: containing 304888 reviews

that will be used to construct our classification

model.

 An evaluation set: containing 76222 reviews that

will be used to computed our final result

b. Data analysis

Regarding the exploration of the dataset we can

observe that between the 12 attributes we have 9 numerical

attributes and we have 3 categorical attributes that need to

be represented in a suitable way.

Fig 1: evaluation of missing data and unique value present

in each feature.

Fig 2: correlation matrix.

The analysis execute on the dataset shows there is no

missing values on the different features. And also there are

many features with very few unique values which is and

information that we will use during the preprocessing step.

Then we plot the correlation matrix of the different

numerical attributes in order to verify if there’s a relation

between some of them. The figure 2 shows that the

correlation is not that strong as the different values on the

matrix are lower than 0.4. But we do find some interesting

relation as show on the figure 3 between the age, the annual

premium and driving license respect to the response. There

is and interval of age and also interval amount of annual

premium in which customers a more willing to subscribe to

a vehicle insurance and also the majority of the customers

that apply to vehicle insurance have a driving license.

mailto:S292635@studenti.polito.it
mailto:s293669@studenti.polito.it
https://colab.research.google.com/drive/1_PFeVZrCF6_i2dMJOeV203Oubj6r7roj
https://colab.research.google.com/drive/1_PFeVZrCF6_i2dMJOeV203Oubj6r7roj

 Fig 3: relation between different features and the

response.

Regarding the categorical features in some cases did notice

useful relation between some features and the target value.

The figure 4 show the majority of the customer that did

apply to the vehicle insurance are those who had a vehicle

damage. On the figure 5 we can visualize that most of the

vehicles that have been damage are those between 1-2 year.

And at last we also noticed how the gender where pretty

much equally distributed among the majority of the

different attributes such as the ages, previously insured or

target value to.

This comprehension will also be useful in order to

understand how our models will understand and interpret

the dataset. Finally, it’s important to view (figure 6) how

the target value is highly unbalance. Actually we have a

more important amount of 0 than 1 and we will also have

to take care of it during the following steps.

Fig 4: relation between the vehicle damage and the target.

Fig 5: relation between the vehicle damage, vehicle age

and the target.

Fig 6: response feature.

B. PROPOSED APPROACH

a. Preprocessing

Relating to data cleaning we firstly drop the id features

because of it’s non relevance for the algorithm. In order to

have the best performance we use to implement the one-hot

encoder on the vehicle_Age feature to convert its different

values into column and assigned a 1 or 0 (true or false in

base of the presence on the row). It’s a suitable approach

because of the fact the vehicle age doesn’t have many

unique value. We decided to use the label on the other

categorical features to transform them into numerical

features.

Fig 6: Description of a portion of the dataset before the

normalization.

After that a quick look on the description of our

dataset shows on figure 7 allow us to view a great

unsteadiness on the values range of the different features.

And so to prevent and inaccurate, slow and inefficient

solution we chose to normalize the dataset using the

standardscaler algorithm.

Fig 6: Description of a portion of the dataset after the

normalization.

we decided to split the dataset into a training part

(80%) and a test part (20%) using a stratify parameter

activate in order to have the same percentage of different

target value on the two parts.

 As we have unbalance target value that can have a

negative influence on algorithms like Logistic Regression

we decided after utilizing pure random sample to obtain

training data and a test data set to balance through the

SMOTE concepts the training data (in terms of response)

using oversampling and undersampling to achieve a 50/50

split. we received four data files to utilize in the

construction and analysis of our models.

 We used the SMOTE-ENN method to balance the

dataset. SMOTE ability to generate synthetic examples for

minority class and ENN (Edited Nearest Neighbor) ability

to delete some observations from both classes that are

identified as having different class between the

observation’s class and its K-nearest neighbor majority

class. It’s basically compute in 8 step (with repetition)

which are the following:

1. (Start of SMOTE) Choose of a random data from

the minority Class

2. Calculating the distance between the random data

3. Multiply the difference with a random number

between 0 and 1, then add the result to the minority

class as a synthetic sample.

4. Repeat step number 2–3 until the desired

proportion of minority class is met. (End of

SMOTE)

5. (Start of ENN) Determine K, as the number of

nearest neighbors. If not determined, then K=3.

6. Find the K-nearest neighbor of the observation

among the other observations in the dataset, then

return the majority class from the K-nearest

neighbor.

7. If the class of the observation and the majority class

from the observation’s K-nearest neighbor is

different, then the observation and its K-nearest

neighbor are deleted from the dataset.

8. Repeat step 2 and 3 until the desired proportion of

each class is fulfilled. (End of ENN)

Fig 7: SMOTE-ENN.

b. Model Selection:

We will now present the following models that have

been implement for this project:

 Decision Tree: it’s adopts a greedy approach. The

Best attribute for the split is selected locally at

each step, it is not a global optimum. To make

that "Best" split it define some Measure of

impurity like the Gini index or the Entropy

 Logistic Regression: is a predictive analysis used

to predict a data value based on prior observations

of a data set. The analysis is more accurate to

conduct when the dependent variable is binary.
 Random Forest Regressor: used to solve

regression and classification problems. Random

forests is consist of many decision trees and

predictions from all trees are pooled to make the

final prediction. Increasing the number of trees

increases the precision of the outcome

 KNN Classifier: is a data classification algorithm

that attempts to determine what group a data point

is in by looking at the data points around it. It’s

require The set of stored records and a distance

metric to compute distance between records.

 LGBM classifier: is a fast, distributed, high-

performance gradient boosting framework based

on decision tree algorithm, used for ranking,

classification and many other machine learning

tasks. it splits the tree leaf wise with the best fit

whereas other boosting algorithms split the tree

depth wise or level wise rather than leaf-wise.

Artificial Neural Network (Ann)

ANN are networks that emulate a biological neural

network and they use a reduced set of concepts from

biological neural systems. The basic idea is to break the big

task of learning and inference into a number of micro-tasks.

These micro-tasks are not independent but interdependent.

https://whatis.techtarget.com/definition/data-set
https://courses.analyticsvidhya.com/courses/ensemble-learning-and-ensemble-learning-techniques?utm_source=blog&utm_medium=which-algorithm-takes-the-crown-light-gbm-vs-xgboost

In the neural network each layer is consists of a number of

neurons that are connected from the input layer via the

hidden layer to the output layer.

Fig 8: Artificial Neural Network.

- Multilayer Perceptron (MLP): This algorithm

has input and output layers, and one or

more hidden layers with many neurons stacked

together. And while in the Perceptron the neuron

must have an activation function that imposes a

threshold, like ReLU or sigmoid, neurons in a

Multilayer Perceptron can use any arbitrary

activation function with also Backpropagation

mechanism.

- Keras Sequential model: Sequential model is a

building models as a linear stack of layers. First,

you instantiate your Sequential model object and

then, you add layers to it one by one using

the add() method.

c. Implementation tuning

Regarding this section, we first of all split the

development dataset in training set (75%) and test set

(25%). We use the training set to train our different models

using also the default configuration for them in order to find

which perform better than the others. we compute the

Accuracy, 𝑭𝟏 score, Precision, and ROC AUC of those

different model and test them with the test set. The result is

given on the tables below with the unbalance and balance

sample.

Table 1: Score of the models by default with unbalance

data

Table 2: Score of the models by default with balance data

The ROC_AUC using the MLP Multilayer Layer

Perceptron (MLP) and the Keras sequential Model give

us respectively 0.95209840 and 0.95248197.

The visualization of the classification_report give us a

quick look of the precision and recall of the result and we

notice that models didn’t perform well with unbalance data

because we have some score of 0.38 and 0.24 for the

precision and recall of the 1. On the other side the models

perform much better well with balance data. We have a

score of 0.80 and 0.93 for the precision and the recall.

Table 3: Classification_report score of the model

(Catboost) by default with balance data

Table 4: Classification_report score of the model

(Catboost) by default with balance data.

Fig 11: ROC curves of Classifers.

The hyperparameter has been defined for the

Catboost, Random forest classifier, Multilayer Layer

Perceptron and Keras Sequential model which where the

best performing models by default.

Model Parameter configuration

Random

Forest
max_features = ['auto', 'sqrt']

criterion = [‘mse’]

bootstrap = [True, False]

 n_estimators = [100, 300, 500, 1000]

CatBoost n_estimators = [100, 200, 500, 1000]

 depth = [3,1,2,6,4,5,7,8,9,10]

 learning_rate

=[0.03,0.001,0.01,0.1,0.2,0.3]

 border_count =[32,5,10,20,50,100,200]

 ctr_border_count=[50,5,10,20,100,200]

 thread_count = 4

Keras

sequential

 epoch=[20,25,50,100]

 InputLayer=[255,8]

MLP Hidden_layer_sizes

= [(50,50,50), (50,100,50), (100,)]

Activation = ['tanh', 'relu']

Solver =['sgd', 'adam']

Alpha = [0.0001, 0.05]

learning_rate = ['constant','adaptive']

Table 5: set of parameter of the different model

C. RESULT:

The table 6 show the ROC AUC score of the execution

on the test set of the different models with their best hyper

parameter. Through the execution of the GridSearch we

had the opportunity to retrieve the best configuration of our

different model. As we can visualize on the Table 6 the

score of the CatBoost is higher than all the others with a

value of 0.981938 follow by the Random Forest, then the

Multilayer Perceptron and Keras Sequential. Impressively

the gap between the differents score is not really big and

also having a quick look on their classification_score gave

us also the same interpretation regarding the Precision and

the Recall. Also the computation of the different models

with test set gave us the same order of score. As the models

was performing with a very high score by default there was

a possibility that the models where being overfitting but the

fact of using the GridSearch with number of cross-

validation = 3 give us the opportunity to bypass the training

data and check for the score on testing data (validation data)

allow us to negate that hypothesis.

Model Parameter configuration ROC AUC

Random

Forest
max_features = 'auto'

criterion = ‘mse’

bootstrap = False

 n_estimators = 200

 min_samples_split = 2

min_samples_leaf' = 2

0.977124522

8843219

CatBoost n_estimators = 300

 depth = 9

 max_depth = 5

 learning_rate = 0.01

 border_count = 50

 ctr_border_count = 10

 0.981938

Keras

sequential

 epoch=[100]

 InputLayer=[64,32,16,8]

 0.957599893

7222543

MLP Hidden_layer_sizes

= (50,50,50)

Activation = ’relu'

Solver = 'adam',

Alpha = 0.0001

learning_rate = 'adaptive'

 0.963419350

9552655

Table 6: best parameter of models with test score.

 This final model compute will be use inside our

Trusted environment execution that we are going to deploy.

II. TRUSTED EXECUTION

ENVIRONMENT

A. INTRODUCTION TO THE TEE

A Trusted Execution Environment (TEE) is an

environment for executing code, in which those executing

the code can have high levels of trust in the asset

management of that surrounding environment because it

can ignore threats from the “unknown” rest of the device.

nowadays to run AI workloads at scale, Enterprises are

increasingly relying on the public cloud and in this context,

data security and privacy can become key concerns. And

even if the use of cryptography has been seen as the

common solution to protecting data in the private cloud or

in the public cloud in all states, this type of mechanism

became more vulnerable to attacks and exploits because of

https://www.trustonic.com/news/technology/what-is-a-trusted-execution-environment-tee/#footnotes

his accessed by more users. So it’s a good resolution to rely

on TEE that can be used on-premises, in the cloud or within

embedded hardware platforms.

Trusted Execution Environment add a layer security

to an existing solution and can be use with confidential

computing technology, without any changes in the

application itself. Some other advantages in deploying in a

trusted execution environment include:

 A Rapid deployment: Advanced TEE solutions are

quick to deploy

 The Insurance of data confidentiality and integrity:

Ensuring the security of sensitive data in transit, in use,

and at rest for critical applications and data.

 The Secure deployment and execution of

applications

 A Trusted Collaboration: A TEE is safe

environment for multiple parties to share and process

data.

 A Simplified Compliance: Achieve compliance with

key management and encryption through an easy-to-

use cryptographic API.

B. GENERAL SCHEMATIC OF TH E

DEPLOYMENT

a. Overview plan

In a General way let consider the following scenario:

we have an AI pipeline schematic show by the figure 12.

The AI model, the training data, and both the code for

training and inference are provided by different

stakeholders. In the meantime, all these stakeholders must

have confidence in each other and the cloud service

provider with their valuable data or intellectual property.

Concerning our project, we have a Health Insurance

company that wants to build a predictive model to

determine if their Health insurance policyholders would be

also interested in a Vehicle Insurance. And also the

company would like to monetize that model with other

insurance companies which could use the model to target

new clients. In fact, the different companies involve need

to have confidence in each other and a confidential

computing is a key technology that can solve these

fundamental.

Figure 12: AI pipeline in the cloud

b. Functional Description.

We will firstly make a recapitulation and present the

existing difficulties and the needs between the different

companies involve through the table 7 that our TEE must

respond concerning our project. As you can see the main

preoccupation is the assurance of a high security and the

respect too of the privacy. Regarding now The

implementation, it has been done on an Azure virtual

machine provided by to us by the Accenture company.

And the following functional diagram (figure 13)

represent the main operation of the collaboration between

two companies in and Trusted Environment Execution.

We can distinguish two main steps concerning the

running of our project.

 First Step: Preparation of the Model

- The company A upload the training data into the

Database

- The deployment of the training data into the Cross

Insurance Machine Learning Algorithm

- Creation of the model and saving into de Database

 Second Step: Prediction step

- The company B upload his data inside the Application

programming interface

- The API deploy the model from the Database and

process with the inferencing of the data

- Return the predicted result.

DIFFICULTIES NEEDS

The absence of confidence

between the different

companies involve on the

project.

Creation of a secure

enclave environment

The lack of privacy

regarding the sharing of

the data throw the could

Storage of the dataset on a

Secure Database

The lack of security

through the download and

the processing of the

model

Execution of the model in

the enclave environment.

The lack of privacy

through the evaluation of

the data

Creation a app that will be

launch into the enclave

Table 7: Evaluation of the needs and difficulties

Figure 13: Functional Diagram

C. CONFIGURATION AND DEPLOYMENT

a. Configuration

In order to setup our TEE inside our Azure virtual

machine we have install and use a set of resources and

services.

 Intel SGX driver: is an Intel technology for

application developers seeking to protect select

code and data from disclosure or modification.

 FSGBASE: which is a feature in recent processors

which allows direct access to the FS and GS

segment base addresses

 EdgelessRT: SDK for Trusted Execution

Environments (TEE) build on top of open enclave.

It adds support for modern programming languages

(in particular Go) and facilitates the porting of

existing applications.

This are the principal tools that were install to create the

enclave. Regarding now the different services that we have

implemented we can enumerate:

 EdgelessDB: is an open-source MySQL-

compatible database for confidential computing.

Like a normal SQL database, EdgelessDB writes a

transaction log to disk and also keeps cold data on

disk. With EdgelessDB, all data on disk is strongly

encrypted. Data is only ever decrypted inside SGX

enclaves.

 EGO: is a framework for building confidential

apps in Go. Confidential apps run in always-

encrypted and verifiable enclaves on Intel SGX-

enabled hardware.

 GOLANG: is an open source programming

language used for general purpose. Most similarly

modeled after C, Go is statically typed and

explicit. We did use this language in order to code

our machine learning Algorithm for our project.

Also Basically some advantages it that Golang has

a High performance in network tasks and

multiprocessing, with and Excellent code

readability and ease of use. One last is that he is a

Static typing and performance.

b. Deployment

Relating to the implementation we first of all install

the different tools to setup the enclave and we also install

the different resources. Then we begin by launching the

EdgelessDB using a support call the manifest to instantiate

and grant specific access to the different actors with their

proper authentication keys that will have access to the

Database. I our case will have two actors who are the

company A that will upload his data inside the database

and the machine learning algorithm that will download the

data for the training step and also save the model and

download it from the database when necessary. Speaking

now about the machine learning model, we code it in

golang and we implemented a Neural Network model

using the parameters similar as much as possible to the one

that we implemented in python. Finally, we deploy and

API in enclave that will essentially receive the request

form the company B, then he will deploy the save model

and do the inference service and send the result to client.

A final precision is to say that all this process is run inside

a Trusted Environment so it is an added value in terms of

security and none of the stakeholder involved we be able

to visualize the data that is none of his concern.

CONCLUSION

Concerning our cross insurance prediction model

between all the models tested the most suitable one was

the Catboost Classifier. But we can also notice that the

order models retained at the end did also perform well

because they all have a final roc auc score in a very close

interval. As we did obtain a high score with the best

parameter, we can be sure that our model is able to predict

in a very efficient way the different customer that will be

willing to take a Vehicle Insurance. On the order side we

also succeed creating a Trusted Environment in which the

company can monetize its model selling the inference job

https://confidentialcomputing.io/
https://www.techtarget.com/searchwindowsserver/definition/C
https://www.techtarget.com/searchnetworking/definition/dynamic-and-static

to another in a Trusted and Secure way. To the question of

why we use the Neural Network instead of the Catboost

model, it’s simply because as today, the catboost machine

learning model is not available in Golang or it’s not very

much efficient. Unfortunately, as the Golang is a fairly

young language and not widely used the ML domain is not

that much develop. And despite that and also the lack of

some parameters we were quite surprise to see how the

model was still performing very well during our different

test. Ultimately another extension that could have been

done regarding the security and the privacy is the setup of

a remote access control for the client in order for him to be

sure that his data will be send in an enclave environment

before uploading them.

